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* Jupiter's interior structure is constrained by Juno's gravity
measurements, Galileo probe atmospheric data, and Voyager's

radio occultations

 NeuralCMS, a deep neural network model, computes interior
structures based on the accurate concentric Maclaurin spheroids

(CMS) method (Hubbard 2013)

 The interior model is coupled to a wind model, enabling a
consistent approach for selecting and characterizing plausible

interior structures

* Clustering analysis identifies four key interior structures for
Jupiter, simplifying the problem to two effective parameters
 The most observationally constrained models fall within one of

the key structures

 Galileo's atmospheric data may not represent the entire

envelope of Jupiter

Jupiter’s interior structure model
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* Four-layer models of Jupiter with N = 1041 spheroids.

* Seven controlling parameters.

e State-of-the-art EQOS for H-He: HG23+CMS109.
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Figure 1 Schematic view of Jupiter’s interior model (left) and the
exploration workflow (right). NeuralCMS and CMS accepts models with a
wide range for J, and J,, and the thermal wind model (TW) constrain all
even and odd gravity harmonics (J,) to Juno’s 30 uncertainty.

Exploration with Neural CMS

* Regression of the CMS model with a reduced run time by a

factor of ~10°

* Takes the seven interior parameters as input to predict J,,

Jy, Je, Jg, and M

* Grid search iterations generate a large sample of plausible

interior models

Initial search: within ¢,

Second search: CMS
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Figure 2 The left column shows accepted models predicted by NeuralCMS
in the first grid search, within the NeuralCMS maximal absolute prediction
errors on the validation dataset. In the right column are accepted models
computed with CMS found in the second tighter grid search. The axes

range is the initial wide search range.

Coupling the interior to a wind model

dp
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Interior solution

/

wind model

e Thermal wind (TW) balance relates solid-body (static)

solutions to the wind

* Optimize the cloud level wind and its decay (Galanti+ 2019)

* Fitall J,-J;5to Juno 30 uncertainty (Durante+2020)

* Within + 20 m/s of the observed wind (Tollefson+2017)
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Results 1:
Distribution of plausible structures
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» The wind model considerbly constrain the low-order
gravity harmonics J, and J,

» The distribution of interior parameters is more refined
but does not change significantly by wind constraints
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Figure 4 Distribution of the observables (a-g) and interior parameters (h-n)

for plausible interior structures according to different criteria. M_, is the
compact core mass.

Clustering analysis

» k-means clustering based on the 7 interior parameters

» Four clusters differentiate between the envelope and
the core setups
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Figure 5 Means (points) and standard deviations (error bars) within the 4

clusters, shown in different colors. Clusters 1 and 2 (red and blue) show
high values of T;,,, and Z;, while clusters 3 and 4 (green and yellow) show
lower values of these parameters. Clusters 1 and 3 feature high values of
M giiute aNd rore, aNd low values of Zy,.., Whereas clusters 2 and 4 display
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the opposite trend. M_,,. was not used in the clustering analysis.
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Figure 6 “Elbow analysis” for the full sample of plausible structures (thick
blue), and the mean and o of the analysis for 10 randomly selected samples
of different size. The red circle marks the optimal number clusters

Results 2:
Characteristic interior structures

» Jupiter's interior can be described by 2 effective parameters
that clearly distinguish the 4 characteristic structures

» The overlap between clusters suggest that they are
characteristic structures, not end members

» Most models constrained by the combination of T,;,,,<178K,

Z2,>7. .., and P;,<3Mbar falls within one key structure
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Figure 7 The plausible interior models in the phase space defined by the

product of the two envelope-controlling parameters and the ratio of the two
dilute core-controlling parameters. Black circles show the most
observationally constrained interior models. The legend displays the fraction
of models assigned to each cluster. "Heavy" and "light" refer to metallicity
(molecular weight).
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Figure 8 Schematic diagram of the four characteristic structures of Jupiter
(not to scale).
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