v-RAY BURSTS: EXTINCTION AND SURVIVABILITY
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Introduction

There is an ongoing debate on whether Gamma Ray Bursts (GRBS)
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might lead to Life threatening scenarios, i.e. complete extinctions: 107 105 103 101 101 103 10-5 107
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Table 1 (Based on Paper | [1]): for each scale of flux of a long v-Ray Burst,

the first column gives the fraction (%) of the Ozone depleted following the event.

The next 3 columns show the probabilities (%) of at least one such LGRB within each time frame.
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Fig. 1: All X-ray data taken from CXRO. Shorter wavelengths (for water) taken from NIST. UV, visible and IR for water from

Segelstein; for Nitrous DiOxide from Schneider.

- Stage I: initial v burst
—lasts up to < 1 hour [3]

—kills off air & surface life, over 2> 1/2 the planet
—breaks atmospheric N, = recombine to NOy

 Stage Il: atmospheric NOy break Os;

—parent star's UV & X-ray reach surface
— NOy limits visible light to surface
—decades until NOy washed away, O3 restored

» Stage lll: back to normal

— O3 filters UV & X-ray
— lasts eons, until next catastrophe

Can/which species survive?
« < /5 planet survives Stage | (opposite side)

* Deep underwater or underground
species could survive Stage |l

» Depth depends on species’ radiation durability

* The GRB’s flux diminishes with distance = the rate of powerful nearby GRBs declines with the rise in flux

» Organism’s durability to ionizing radiation differs: we note humans (rep. mammals) can sustain 5-8 Gy, while
the resilient Tardigrades [2] can sustain up to 8 KGy. Most surface complex organisms thus expected to die.

» A 1000kJ/m? GRB would have killed our ancestors up to the Tiktaalik, about 375 Myr ago [5]. The average
rate for such GRBs here is 1/500 Myr (Table 1). Thus, while on Earth subterranean fauna were unnecessary
in evolution towards intelligent life, on planets with more frequent GRBs they might be relevant.

Future Work: Survivability beyond the single organism

* Extinction vs. Survival of groups and species, looking into regional distributions
« Ecosystems and their possible collapse or successions; in particular, effects of photosynthesis changes

» Impact on evolutionary lines, trees, fallbacks and alternatives
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- We assume an "Earth-like Planet", i.e. a
rocky planet in the habitable zone around a G-
type star of Population I. This implies a simi-
lar length year, a similar length day, a similar
composition, and a similar lifetime.

* As the main sustained effect of a GRB comes
through Ozone depletion and replenishing, we
assume irrelevance of GRBs prior to oxygena-
tion to recent levels (~ 0.5 Gyr) [4].
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Fig. 2: A timeline of Earth’s atmosphere from [4]. The areas marked in

gray highlight oxygenation events, incidents where Earth’s atmospheric

oxygen grew by orders of magnitude.

Table 1 shows only long GRBs, and Fig. 1 as-
sumes that the GRBs are in fact LGRBs; the full
corresponding table in [1] shows that these domi-
nate the threats (both longer and more energetic).
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