Space-borne super-resolution
remote sensing technology for
detecting, mapping, and
classifying Halophila stipulacea
subtidal small-leaved tropical
seagrass meadows
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INTRODUCTION
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Seagrass meadows are complex marine habitats that provide important ecosystem functions including carbon storage, water filtration, and coastal protection as noted by Duarte et al. (2005). Out of
these, the small leaved tropical seagrass, Halophila stipulacea, found in the northern Gulf of Agaba is especially important for the biodiversity and ecosystem integrity (Winters et al., change, 2017).
anthropogenic However, activities subtidal and seagrass occasional communities flash are floods under (Al-Rousan threat et from al., climate 2011).

The management and assessment of these subaqueous vegetation communities is complicated by the fact that they are underwater, sparse, and covered by water which hampers the application of
conventional remote sensing strategies (Brook et al., 2022). New remote sensing data such as VENuS and Sentinel-2 high-resolution satellite imagery, along with advanced machine learning
approaches, have the potential to help in overcoming these challenges (Coffer et al., 2020; Traganos et al., 2018).

METHODOLOGY

Study Area

The study focused on three locations in the northern Gulf of Agaba: North Beach, Katzaa Beach, and Taba
Beach. These sites were chosen for their ecological importance and varying exposure to flash floods, enabling
a comprehensive analysis of seagrass dynamics under different environmental conditions.

Data Sources

Two satellite datasets were utilized: VENuS, with a 5 m spatial resolution, 11 spectral bands, and a 2-day
revisit, and Sentinel-2, with a 10 m resolution and indices such as NDWI, CDOM, MCARI and Chlorophyll index.
Ground truth data were collected via snorkeling and drop-camera surveys at depths of 2-50 meters to
validate the satellite observations.

Pre-Processing

Pre-processing included sun-glint correction to minimize surface reflection, atmospheric correction using the
Sen2Cor processor, and super-resolution processing of VENuS imagery to enhance its spatial detail for
accurate classification of seagrass meadows.

Machine Learning Models

Five machine learning models were applied: Regression Tree (RT), Random Forest (RF), Gradient Boosting
Regression Tree (GBRT), Support Vector Regression (SVR), and Extreme Gradient Boosting Regression
(XGBR). XGBR, tuned with a learning rate of 0.05, max_depth = 6, and 200 estimators, achieved the highest
accuracy (R? = 0.97; RMSE = 0.21).

Testing and Validation

Models were trained on 80% of the data and tested on 20%. Validation with ground truth data demonstrated
XGBR’s superior performance, particularly in handling low-density vegetation and underwater noise, making
it the most robust for submerged habitat mapping.

RESULTS

Best Model Performance
The Extreme Gradient Boosting Regression (XGBR) model outperformed other algorithms, achieving R? = 0.97
and RMSE = 0.21. Its robust performance effectively handled low-density vegetation and underwater noise.

ML algorithm R? Training (70%) R? Testing (30%) RMSE (SG%)
RT 0.8230 0.7668 2.9055
RF 0.7925 0.7264 3.1712
ensemble GBRT 0.8750 0.8466 2.1051
SVR 0.9080 0.8887 1.9193
ensemble XGBR 0.9890 0.9718 0.2124

Feature Importance

The most important variables for predicting seagrass cover (%) in the XGBR model were wavelengths in
the green spectrum (491.9 nm, 555 nm) with F-scores of 78% and 38%, followed by blue spectrum
wavelengths (446.9 nm, 423.9 nm). Near-infrared wavelengths contributed minimally to the predictions.

Performance at Depths
The XGBR model maintained an RMSE <0.3 for depths up to 15 m but showed decreased accuracy in
deeper waters (>25 m) due to limited data availability

Seagrass Cover Categories
The XGBR model performed consistently across four seagrass cover categories (low: <25%, mid: 25-50%,
high: 50-75%, very high: >75%), with minimal variation in RMSE values

CONCLUSION

The use of VENuS imagery along with the XGBR model was very efficient in predicting the distribution
and cover 0.97. of There Halophila are stipulacea still with issues an with R? the of ability to identify
sparse vegetation and depths of more than 20 meters. Flash flood was a major cause of severe loss of
seagrass which exposed the vulnerability of the ecosystem. Further research should seek to improve the
detection of seagrass in deep water and also consider other stressors in the environment for the purpose
of conservation.
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demonstrates the close alignment between in-situ measurements and the XGBR-predicted
seagrass cover, showcasing the model’s precision in mapping spatial distributions.
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Impact of Flash Floods

Flash floods greatly affected seagrass cover (SC%) from 2018 to 2020. After the 2018 flood,
North Beach's cover dropped from 40% to 10%, fast with Taba sluggish Beach recovery.
Katzaa Beach was moderately inundated during recovery, although not regularly. Blue lines
show floods and black lines show SC changes.
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